Effect of porphyrin ligands on the regioselective dehydrogenation versus epoxidation of olefins by oxoiron(IV) mimics of cytochrome P450.
نویسندگان
چکیده
The cytochromes P450 are versatile enzymes involved in various catalytic oxidation reactions, such as hydroxylation, epoxidation and dehydrogenation. In this work, we present combined experimental and theoretical studies on the change of regioselectivity in cyclohexadiene oxidation (i.e., epoxidation vs dehydrogenation) by oxoiron(IV) porphyrin complexes bearing different porphyrin ligands. Our experimental results show that meso-substitution of the porphyrin ring with electron-withdrawing substituents leads to a regioselectivity switch from dehydrogenation to epoxidation, affording the formation of epoxide as a major product. In contrast, electron-rich iron porphyrins are shown to produce benzene resulting from the dehydrogenation of cyclohexadiene. Density functional theory (DFT) calculations on the regioselectivity switch of epoxidation vs dehydrogenation have been performed using three oxoiron(IV) porphyrin oxidants with hydrogen atoms, phenyl groups, and pentachlorophenyl (ArCl(5)) groups on the meso-position. The DFT studies show that the epoxidation reaction by the latter catalyst is stabilized because of favorable interactions of the substrate with halogen atoms of the meso-ligand as well as with pyrrole nitrogen atoms of the porphyrin macrocycle. Hydrogen abstraction transition states, in contrast, have a substrate-binding orientation further away from the porphyrin pyrrole nitrogens, and they are much less stabilized. Finally, the regioselectivity of dehydrogenation versus hydroxylation is rationalized using thermodynamic cycles.
منابع مشابه
First direct evidence for stereospecific olefin epoxidation and alkane hydroxylation by an oxoiron(IV) porphyrin complex.
We report in this study that an oxoiron(IV) porphyrin complex bearing electron-deficient porphyrin ligand, (TPFPP)FeIV=O (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion), shows reactivities similar to those found in oxoiron(IV) porphyrin pi-cation radicals. In the epoxidation of olefins by the (TPFPP)FeIV=O complex, epoxides were yielded as major products; cyclohexene oxide was the ...
متن کاملNonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins.
Mononuclear nonheme oxoiron(IV) complexes bearing 15-membered macrocyclic ligands were generated from the reactions of their corresponding iron(II) complexes and iodosylbenzene (PhIO) in CH(3)CN. The oxoiron(IV) species were characterized with various spectroscopic techniques such as UV-vis spectrophotometer, electron paramagnetic resonance, electrospray ionization mass spectrometer, and resona...
متن کاملMechanistic Insight into Alcohol Oxidation by High-Valent Iron-Oxo Complexes of Heme and Nonheme LigandsThis research was supported by the Ministry of Science and Technology of Korea through Creative Research Initiative Program.
High-valent iron–oxo species are frequently invoked as the key intermediates in the catalytic oxidation of organic substrates by heme and nonheme iron mono-oxygenases. In the case of heme-containing enzymes such as cytochromes P450, oxoiron(iv) porphyrin p-cation radicals have been proposed as active oxidants that effect a number of oxidation reactions, which include alkane hydroxylation, olefi...
متن کاملIron Porphyrin Complexes Reversible Formation of Iodosylbenzene±Iron Porphyrin Intermediates in the Reaction of Oxoiron(iv) Porphyrin p-Cation Radicals and Iodobenzene**
High-valent oxoiron(iv) porphyrin p-cation radicals 2 are generally accepted to be the key reactive intermediates in a variety of oxidation reactions by heme-containing enzymes such as cytochromes P450, peroxidases, and catalases.[1,2] Extensive studies with synthetic iron(iii) porphyrin complexes and various terminal oxidants have shown that 2 is generated by heterolytic O X bond cleavage of [...
متن کاملImmobilization of a molybdenum complex with tetradentate ligand on mesoporous material MCM-41 as catalyst for epoxidation of olefins
Covalent grafting of MCM-41 with 3-chloropropyl trimethoxysilane and subsequent reaction respectively with acacdien and complexation with MoO2(acac)2 afforded MoO2acacdien@MCM-41. X-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properties of the support as well as accessibility of the channel system despite sequential reduction in surface area, pore vo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 113 43 شماره
صفحات -
تاریخ انتشار 2009